Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.

نویسندگان

  • K Li
  • J W Frost
چکیده

3-Dehydroshikimic acid is a hydroaromatic precursor to chemicals ranging from L-phenylalanine to adipic acid. The concentration and yield of 3-dehydroshikimic acid microbially synthesized from various carbon sources has been examined under fed-batch fermentor conditions. Examined carbon sources included D-xylose, L-arabinose, and D-glucose. A mixture consisting of a 3:3:2 molar ratio of glucose/xylose/arabinose was also evaluated as a carbon source to model the composition of pentose streams potentially resulting from the hydrolysis of corn fiber. Escherichia coli KL3/pKL4.79B, which overexpresses feedback-insensitive DAHP synthase, synthesizes higher concentrations and yields of 3-dehydroshikimic acid when either xylose, arabinose, or the glucose/xylose/arabinose mixture is used as a carbon source relative to when glucose alone is used as a carbon source. E. coli KL3/pKL4.124A, which overexpresses transketolase and feedback-insensitive DAHP synthase, synthesizes higher concentrations and yields of 3-dehydroshikimic acid when the glucose/xylose/arabinose mixture is used as the carbon source relative to when either xylose or glucose is used as a carbon source. Observed high-titer, high-yielding synthesis of 3-dehydroshikimic acid from the glucose/xylose/arabinose mixture carries significant ramifications relevant to the employment of corn fiber in the microbial synthesis of value-added chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving product yields on D-glucose in Escherichia coli via knockout of pgi and zwf and feeding of supplemental carbon sources.

The use of lignocellulosic biomass as a feedstock for microbial fermentation processes presents an opportunity for increasing the yield of bioproducts derived directly from glucose. Lignocellulosic biomass consists of several fermentable sugars, including glucose, xylose, and arabinose. In this study, we investigate the ability of an E. coli Δpgi Δzwf mutant to consume alternative carbon source...

متن کامل

Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose

BACKGROUND D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal respo...

متن کامل

Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

BACKGROUND Caldicellulosiruptor saccharolyticus is a thermophilic, Gram-positive, non-spore forming, strictly anaerobic bacterium of interest in potential industrial applications, including the production of biofuels such as hydrogen or ethanol from lignocellulosic biomass through fermentation. High-resolution, solution-state nuclear magnetic resonance (NMR) spectroscopy is a useful method for ...

متن کامل

Production of d-lactate from glucose using Klebsiella pneumoniae mutants

BACKGROUND D-Lactate is a valued chemical which can be produced by some bacteria including Klebsiella pneumoniae. However, only a few studies have focused on K. pneumoniae for D-lactate production with a significant amount of by-products, which complicated the purification process and decreased the yield of D-lactate. RESULTS Based on the redirection of carbon towards by-product formation, th...

متن کامل

Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway

BACKGROUND Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 1999